1. Home
  2. Browse by Author

Browsing by Author "Dündar, Mehmet Sait"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Motion artifact detection in colonoscopy images
    (The EuroBiotech Journal, 2018) Yılmaz, Bülent; Kaçmaz, Rukiye Nur; Dündar, Mehmet Sait; Doğan, Serkan; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;
    Computer-aided detection is an integral part of medical image evaluation process because examination of each image takes a long time and generally experts’ do not have enough time for the elimination of images with motion artifact (blurred images). Computer-aided detection is required for both increasing accuracy rate and saving experts’ time. Large intestine does not have straight structure thus camera of the colonoscopy should be moved continuously to examine inside of the large intestine and this movement causes motion artifact on colonoscopy images. In this study, images were selected from open-source colonoscopy videos and obtained at Kayseri Training and Research Hospital. Totally 100 images were analyzed half of which were clear. Firstly, a modified version of histogram equalization was applied in the pre-processing step to all images in our dataset, and then, used Laplacian, wavelet transform (WT), and discrete cosine transform-based (DCT) approaches to extract features for the discrimination of images with no artifact (clear) and images with motion artifact. The Laplacian-based feature extraction method was used for the first time in the literature on colonoscopy images. The comparison between Laplacian-based features and previously used methods such as WT and DCT has been performed. In the classification phase of our study, support vector machines (SVM), linear discriminant analysis (LDA), and k nearest neighbors (k-NN) were used as the classifiers. The results showed that Laplacian-based features were more successful in the detection of images with motion artifact when compared to popular methods used in the literature. As a result, a combination of features extracted using already existing approaches (WT and DCT) and the Laplacian-based methods reached 85% accuracy levels with SVM classification approach.
  • Loading...
    Thumbnail Image
    doctoralthesis.listelement.badge
    Time distributed classification of alzheimer's disease on MRI scans
    (Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Dündar, Mehmet Sait; 0000-0002-0336-4825; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
    This thesis presents a comprehensive framework for studying Alzheimer's Disease (AD) progression by focusing on the classification of AD, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) individuals using advanced machine learning models that analyze changes in brain volumetrics over time through MRI scans. In the first phase of the research, MR images from the Alzheimer's Disease Neuroimaging Initiative database were utilized, which included sequences of 3-4 scans taken annually from 22 CN, 18 AD, and 20 MCI subjects. Key volumetric parameters such as cortical thickness and intracranial volumes were extracted using the CAT12 toolbox in SPM software. A novel classification method based on the rate of volumetric changes over time was employed, effectively capturing the progressive nature of neurological changes. This approach achieved accuracies of 82.5% in distinguishing AD from CN, 71% in differentiating MCI from AD, and 69% in separating MCI from CN, alongside a 55% accuracy in a three-way classification using random forest and support vector machines. Building on these initial insights, the second phase of the study significantly advanced the methodology by integrating a pre-trained 3D ResNet 101 CNN algorithm for initial spatial categorization of MRI scans, followed by the use of Long Short-Term Memory (LSTM) networks. These LSTMs processed the same sequences of 3-4 annual scans for each patient, enhancing the model's ability to analyze and interpret the temporal progression of volumetric changes. This sophisticated approach led to marked improvements in classification accuracy: 96.7% in differentiating AD from CN, 87.5% in distinguishing AD from MCI, and 86.4% in separating MCI from CN. The study effectively demonstrates a significant enhancement in capturing the temporal dynamics of AD progression.