Browsing by Author "Coşkun, Mustafa"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Master Thesis Çalışan Yıpranması Tahmini ve Film Tavsiyesi için Öneri Sistemi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Özdemir, Fatma; Güngör, Vehbi Çağrı; Coşkun, MustafaBu tezde Makine Öğrenimi Topluluğunda ortaya atılan iki probleme odaklanıyoruz: tavsiye sistemi ve çalışanların yıpranma sorunu. Tavsiye sistemi, kullanıcıların bir ürün satın alırken belirli bir öğeyi tercih edip etmeyeceğini tahmin eden bir bilgi filtreleme sistemidir. Tavsiye sistemleri tahmin etmek için kullanıcı / öğe bilgilerini kullanır. Bu sistemler, özellikle işbirlikçi filtreleme tabanlı sistemler, E-ticarette yaygın olarak kullanılmaktadır. Bu çalışmada, ortak filtreleme ve kullanıcıların / öğelerin yan bilgilerini birleştiren karma bir model öneriyoruz. Önerilen modelde, ilişkili komşuları bulmak ve onları kümelemek için kullanıcıların / öğelerin yan bilgileri kullanılır. Daha sonra, bu kümelere ortak filtreleme yöntemleri uygulanır. Önerilen modelin performansını değerlendirmek için matris çarpanlara ayırma ve yeniden başlatma ile rastgele yürüme uygulanır. Önerilen yaklaşım MovieLens verileri üzerinde sistematik olarak değerlendirilir. Deneysel sonuçlar, kullanıcının / öğenin yan bilgisini kullanan önerilen modelin geleneksel ortak filtreleme yöntemlerinin performansını önemli ölçüde geliştirdiğini göstermektedir. Tezin ikinci bölümünde, hangi kişilerin şu anda çalıştıkları bir şirketten ayrılacağını / devam edeceğini tahmin etmeye çalışan, çalışan yıpranması tahmini sorununu ele almaya çalışıyoruz. Günümüzde şirketler için çalışanların işlerini bırakıp bırakmayacaklarını tahmin etmeleri çok önemlidir. En iyi performans gösteren çalışanların işi bırakması, kuruluşlarda finansal veya kurumsal bilgi kaybına neden olabilir. Bu tür kayıplardan kaçınmak için şirketler, çalışanların yıpranmasını tahmin etmelidir. Bununla birlikte, şirketlerin İK departmanları bu tür tahminleri yapacak kadar gelişmiş değildir. Bu amaçla şirketler, çalışanların yıpranmasını zamanında ve doğru bir şekilde tahmin etmek için veri madenciliği yöntemleri kullanmaktadır. Bu çalışmada, Doğrusal diskriminant analizi (LDA), Naive Bayes, Bagging, AdaBoost, Lojistik Regresyon, Destek Vektör Makinesi (SVM), Rastgele Orman, J48, LogitBoost, Çok Katmanlı Algılayıcı (MLP), K-En Yakın Komşular (KNN), XGBoost, Graph Convolutional Networks, iki özel şirket veri kümesinde (IBM ve Adesso İnsan Kaynakları veri kümelerine) çalışanların yıpranmasını tahmin etmek için uygulanmıştır. Mevcut çalışmalardan farklı olarak, bulgularımızı sistematik olarak F-ölçü, Eğri Altında Alan, doğruluk, duyarlılık ve özgüllük gibi çeşitli sınıflandırma metrikleri ile değerlendiriyoruz. Performans sonuçları, LogitBoost ve Lojistik Regresyon algoritmaları gibi veri madenciliği yöntemlerinin çalışanların yıpranmasını tahmin etmede çok yararlı olabileceğini göstermektedir.Master Thesis Grafik Teorisi Tabanlı Trafik Işığı Yöntemi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Thahir, Adam Rizvi; Güngör, Vehbi Çağrı; Coşkun, MustafaTraffic congestion and delays caused in traffic light intersections can adversely affect countries in terms of money, time, and air pollution. With the advancement of computational power as well as artificial intelligent algorithms, researchers seek novel and optimized solutions to the traffic congestion problem. Most modern traffic light systems use manually designed traffic phase plans at intersections, and although this has proven to be relatively sufficient for today's traffic management systems, implementing a smarter traffic phase selection system is deemed to be more effective. Traditional approaches rely heavily on traffic history (static information), whereas Reinforcement Learning (RL) algorithms, which offer an 'adoptable'/dynamic traffic management system, are gaining increased research interest. Despite the usefulness of these RL based deep learning techniques, they inherently suffer from training time to apply them in real-world traffic management systems. This study aims to alleviate the training time problem of deep learning-based techniques, The research brings forth a novel graph-based approach that is able to use known occupancies of roads to predict which other roads in a given network would become congested in the future. Based on the predictions obtained, we are able to dynamically set traffic light times in all intersections within a connected network, starting from roads with known occupancies, and moving along connected roads that are anticipated to be congested. Predications are done using edge-based semi-supervised graph algorithms. Conducted simulations show that our approach can yield comparable average wait time to that of deep-learning based approach in minutes, compared to the much longer training time required by the deep-learning models. Keywords: Deep Learning, Reinforcement Learning, Traffic Flow, CongestionMaster Thesis Kanser Alt Tipi Tanımlama Problemi için Bir Etiket Yayma Yaklaşımı Geliştirme(Tubitak Scientific & Technological Research Council Turkey, 2022) Guner, Pinar; Bakir-Gungor, Burcu; Coskun, Mustafa; Güner, Pınar; Güngör, Burcu; Coşkun, MustafaKanser terimi, anormal hücrelerin kontrolden çıkıp diğer dokuları istila ettiği hastalıkları tanımlamak için kullanılır. Çok sayıda kanser türü vardır ve birçok kanser türü, farklı klinik ve biyolojik etkileri olan çeşitli alt tiplere sahiptir. Bu farklılıklar, kanserin farklı alt tiplerinin tedavisi için farklı yöntemlerin izlenmesi gerektiğini göstermektedir. Kişiselleştirilmiş tıbbın geliştirilmesine yardımcı olabileceğinden, kanser alt tiplerini keşfetmek biyoinformatikte önemli bir problemdir. Kanserin alt tipinin bilinmesi, tedavi basamaklarının ve öngörünün belirlenmesinde faydalıdır. Hesaplamalı biyoinformatik yöntemler, farklı kanser alt tiplerinin ortak moleküler patolojisini ortaya çıkararak hedeflenen tedavileri tasarlamak için kanser analizi yapmaya yardımcı olur. Şimdiye kadar, kanser alt tiplerini keşfetmek veya kanseri bilgilendirici alt tiplere ayırmak için çeşitli hesaplamalı yöntemler önerildi. Ancak, mevcut çalışmalar verilerin seyrekliğini dikkate almamakta ve kötü koşullu (tersi alınamayan) çözümle sonuçlanmaktadır. Bu eksikliği gidermek için, bu tezde, uygulamalı sayısal cebir tekniklerini kullanarak kanseri alt tiplerine ayırmak için alternatif bir denetimsiz hesaplama yöntemi öneriyoruz. Daha detaylı olarak, bu etiket yayma tabanlı yaklaşımı kolon, baş ve boyun, rahim, mesane ve meme tümörlerinin somatik mutasyon profillerini sınıflandırmak için uyguladık. Sonra, yöntemimizin performansını temel yöntemlerle karşılaştırarak değerlendirdik. Kapsamlı deneyler, yaklaşımımızın, modern denetimsiz ve denetimli yaklaşımlardan büyük ölçüde daha iyi performans göstererek tümör sınıflandırma görevlerini yüksek oranda yerine getirdiğini kanıtlamaktadır.Master Thesis Pekiştirmeli Öğrenme Yöntemi Tabanlı Trafik Işık Yönetim Sistemleri(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Can, Sultan Kübra; Güngör, Vehbi Çağrı; Coşkun, MustafaTraffic lights have been around since 19th century, and aims to ease the chaos happening in intersections. It's recorded that, people spend hours in traffic leading degradations in human health and environment. Even though its main purpose is to reduce traffic congestion and decrease the number of accidents, most of the approaches cannot adapt very well to fast changing dynamics and growing demands of the intersections with modern world developments. Fixed-time approaches use predefined settings, and to maximize its success time slots are identified. Although there are successful attempts, they don't answer today's demands of traffic. To overcome this problem, adaptive controllers are developed, and detectors and sensors are added to systems to enable adoption and dynamism. Recently, reinforcement learning has shown its capability to learn the dynamics of complex environments such as urban traffic. Although it was studied in single junction systems, one of the problems was the lack of consistency with how the real world system works. Most of the systems assume the environment is fully observable or actions would be freely executed using simulators. This study aims to merge usefulness of reinforcement learning methods with real world constraints. The experiments conducted have shown that, with queue data obtained from sensors located at the beginning and at the end of the roads and limited action spaces it works very well and A2C is able to learn the dynamics of the environment while converging and stabilizes itself in a respectively short duration.