1. Home
  2. Browse by Author

Browsing by Author "Cini, Nevin"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    A Deep Ensemble Approach for Long-Term Traffic Flow Prediction
    (SPRINGER, 2024) Cini, Nevin; Aydin, Zafer; 0000-0001-5348-4043; 0000-0001-7686-6298; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Cini, Nevin; Aydin, Zafer
    In the last 50 years, with the growth of cities and increase in the number of vehicles and mobility, traffic has become troublesome. As a result, traffic flow prediction started to attract attention as an important research area. However, despite the extensive literature, traffic flow prediction still remains as an open research problem, specifically for long-term traffic flow prediction. Compared to the models developed for short-term traffic flow prediction, the number of models developed for long-term traffic flow prediction is very few. Based on this shortcoming, in this study, we focus on long-term traffic flow prediction and propose a novel deep ensemble model (DEM). In order to build this ensemble model, first, we developed a convolutional neural network (CNN), a long short-term memory (LSTM) network and a gated recurrent unit (GRU) network as deep learning models, which formed the base learners. In the next step, we combine the output of these models according to their individual forecasting success. We use another deep learning model to determine the success of the individual models. Our proposed model is a flexible ensemble prediction model that can be updated based on traffic data. To evaluate the performance of the proposed model, we use a publicly available dataset. Experimental results show that the developed DEM model has a mean square error of 0.06 and a mean absolute error of 0.15 for single-step prediction; it shows that achieves a mean square error of 0.25 and a mean absolute error of 0.32 for multi-step prediction. We compared our proposed model with many models in different categories; individual deep learning models (i.e., LSTM, CNN, GRU), selected traditional machine learning models (i.e., linear regression, decision tree regression, k-nearest-neighbors regression) and other ensemble models such as random-forest regression. These results also support the claim that ensemble learning models perform better than individual models.
  • Loading...
    Thumbnail Image
    Article
    A Methodology for Comparing the Reliability of GPU-Based and CPU-Based HPCs
    (ASSOC COMPUTING MACHINERY, 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA, 2020) Cini, Nevin; Yalcin, Gulay; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
    Today, GPUs are widely used as coprocessors/accelerators in High-Performance Heterogeneous Computing due to their many advantages. However, many researches emphasize that GPUs are not as reliable as desired yet. Despite the fact that GPUs are more vulnerable to hardware errors than CPUs, the use of GPUs in HPCs is increasing more and more. Moreover, due to native reliability problems of GPUs, combining a great number of GPUs with CPUs can significantly increase HPCs' failure rates. For this reason, analyzing the reliability characteristics of GPU-based HPCs has become a very important issue. Therefore, in this study we evaluate the reliability of GPU-based HPCs. For this purpose, we first examined field data analysis studies for GPU-based and CPU-based HPCs and identified factors that could increase systems failure/error rates. We then compared GPU-based HPCs with CPU-based HPCs in terms of reliability with the help of these factors in order to point out reliability challenges of GPU-based HPCs. Our primary goal is to present a study that can guide the researchers in this field by indicating the current state of GPU-based heterogeneous HPCs and requirements for the future, in terms of reliability. Our second goal is to offer a methodology to compare the reliability of GPU-based HPCs and CPU-based HPCs. To the best of our knowledge, this is the first survey study to compare the reliability of GPU-based and CPU-based HPCs in a systematic manner.