1. Home
  2. Browse by Author

Browsing by Author "Broadwater, Robert P."

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Configurable, Hierarchical, Model-based, Scheduling Control with photovoltaic generators in power distribution circuits
    (PERGAMON-ELSEVIER SCIENCE LTD, 2015) Jung, Jaesung; Onen, Ahmet; Russell, Kevin; Broadwater, Robert P.; Steffel, Steve; Dinkel, Alex; 0000-0001-7086-5112; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Onen, Ahmet
    Existing distribution systems and their associated controls have been around for decades. Most distribution circuits have capacity to accommodate some level of PV generation, but the question is how much can they handle without creating problems. This paper proposes a Configurable, Hierarchical, Modelbased, Scheduling Control (CHMSC) of automated utility control devices and photovoltaic (PV) generators. In the study here the automated control devices are assumed to be owned by the utility and the PV generators and PV generator controls by another party. The CHMSC, which exists in a hierarchical control architecture that is failure tolerant, strives to maintain the voltage level that existed before introducing the PV into the circuit while minimizing the circuit loss and reducing the motion of the automated control devices. This is accomplished using prioritized objectives. The CHMSC sends control signals to the local controllers of the automated control devices and PV controllers. To evaluate the performance of the CHMSC, increasing PV levels of adoption are analyzed in a model of an actual circuit that has significant existing PV penetration and automated voltage control devices. The CHMSC control performance is compared with that of existing, local control. Simulation results presented demonstrate that the CHMSC algorithm results in better voltage control, lower losses, and reduced automated control device motion, especially as the penetration level of PV increases.
  • Loading...
    Thumbnail Image
    Article
    Distribution Automation Effects on Reliability during Major Contingencies
    (IEEE, 2018) Yoldas, Yeliz; Onen, Ahmet; Alan, Irfan; Broadwater, Robert P.; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;
    Distribution automation affects reliability by providing faster restoration ability. In this study, the effect of distribution automation on radial distribution circuits during substation failures at peak load is investigated. The ultimate goal is to compare circuit automation to manual operation, where the comparison evaluates planning criteria reliability for customer interruption hours. The results show that distribution automation can improve reliability measurements such as SAIDI, SAIFI and CAIDI.
  • Loading...
    Thumbnail Image
    Article
    Economic evaluation of distribution system smart grid investments
    (Taylor and Francis Inc., 2015) Önen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey; 0000-0001-7086-5112; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Önen, Ahmet; Broadwater, Robert P.
    This article investigates the economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed "hard dollar" benefits. Smart grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These smart grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for a restoration algorithm. The economic analysis uses the time-varying value of the locational marginal price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while simultaneously lowering costs.
  • Loading...
    Thumbnail Image
    Article
    Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits
    (ELSEVIER, 2015) Jung, Jaesung; Onen, Ahmet; Russell, Kevin; Broadwater, Robert P.; 0000-0001-7086-5112; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Onen, Ahmet
    Both steady-state and quasi steady-state impact studies in high Photovoltaic (PV) penetration distribution circuits are presented. The steady-state analysis evaluates impacts on the distribution circuit by comparing conditions before and after extreme changes in PV generation at three extreme circuit conditions, maximum load, maximum PV generation, and when the difference between the PV generation and the circuit load is a maximum. The quasi steady-state study consists of a series of steady-state impact studies performed at evenly spaced time points for evaluating the spectrum of impacts between the extreme impacts. Results addressing the impacts of cloud cover and various power factor control strategies are presented. PV penetration levels are limited and depend upon PV generation control strategies. The steady state and quasi steady-state impact studies provide information that is helpful in evaluating the effect of PV generation on distribution circuits, including circuit problems that result from the PV generation.
  • Loading...
    Thumbnail Image
    Article
    Model-centric Distribution Automation: Capacity, Reliability, and Efficiency
    (TAYLOR & FRANCIS INC530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106, 2016) Onen, Ahmet; Jung, Jaesung; Dilek, Murat; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; 0000-0001-7086-5112; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Onen, Ahmet
    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditional system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. The evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.