1. Home
  2. Browse by Author

Browsing by Author "Bicer, Aysenur"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Spectrally Tunable White Light-Emitting Diodes Based on Carbon Quantum Dot-Doped Poly(N-vinylcarbazole) Composites
    (AMER CHEMICAL SOC, 2024) Sahin Tiras, Kevser; Biçer, Aysenur; Soheyli, Ehsan; Mutlugun, Evren; 0000-0001-5523-4769; 0000-0003-3715-5594; 0000-0002-1403-7934; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Bicer, Aysenur; Soheyli, Ehsan; Mutlugun, Evren
    Electroluminescent white light-emitting diodes (WLEDs) are always of great interest for emerging display applications. Carbon-based quantum dots (CQDs) are the newest emerging nanoscale materials that can be employed for this purpose, owing to their broad and bright light emission properties. In the present work, highly luminescent CQDs with an emission quantum yield of 60% were prepared via a colloidal solvothermal method and subsequent silica gel column chromatography. The photoluminescence (PL) peak was located at 550 nm possessing yellow emission, with a full width at halfmaximum of 98 nm and a relatively long lifetime of 10.23 ns through a single-exponential recombination pathway. CQDs were employed in an electroluminescent device architecture of an ITO/PEDOT:PSS/TFB/CQD:PVK/TPBi/LiF/Al structure and blended with poly(N-vinylcarbazole) (PVK) to evaluate their ability to reach white electroluminescent emission. Results confirmed a high external quantum efficiency (EQE) of 0.76% and a maximum luminescence of 774.3 cd·m−2 . Tuning the ratio between CQDs and PVK from 1:10.25 to 1:5.75 resulted in a systematic shift in CIE x−y coordinates from 0.23−0.26 to 0.21−0.24, located close to the cool white region. The results of the present study can be considered a step forward in fabricating efficient WLEDs based on low-cost CQDs.
  • Loading...
    Thumbnail Image
    Article
    Tailoring Quantum Dot Shell Thickness and Polyethylenimine Interlayers for Optimization of Inverted Quantum Dot Light-Emitting Diodes
    (MDPI, 2024) Yazici, Ahmet F.; Ocal, Sema Karabel; Bicer, Aysenur; Serin, Ramis B.; Kacar, Rifat; Ucar, Esin; Ulku, Alper; Erdem, Talha; Mutlugun, Evren; 0000-0003-3905-376X; 0000-0003-3715-5594; 0000-0003-2747-7856; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Yazici, Ahmet F.; Ocal, Sema Karabel; Bicer, Aysenur; Erdem, Talha; Mutlugun, Evren
    Quantum dot light-emitting diodes (QLEDs) hold great promise for next-generation display applications owing to their exceptional optical properties and versatile tunability. In this study, we investigate the effects of quantum dot (QD) shell thickness, polyethylenimine (PEI) concentration, and PEI layer position on the performance of inverted QLED devices. Two types of alloyed-core/shell QDs with varying shell thicknesses were synthesized using a one-pot method with mean particle sizes of 8.0 ± 0.9 nm and 10.3 ± 1.3 nm for thin- and thick-shelled QDs, respectively. Thick-shelled QDs exhibited a higher photoluminescence quantum yield (PLQY) and a narrower emission linewidth compared to their thin-shelled counterparts. Next, QLEDs employing these QDs were fabricated. The incorporation of PEI layers on either side of the QD emissive layer significantly enhanced device performance. Using PEI on the hole transport side resulted in greater improvement than on the electron injection side. Sandwiching the QD layer between two PEI layers led to the best performance, with a maximum external quantum efficiency (EQE) of 17% and a peak luminance of 91,174 cd/m2 achieved using an optimized PEI concentration of 0.025 wt% on both electron injection and hole injection sides. This study highlights the critical role of QD shell engineering and interfacial modification in achieving high-performance QLEDs for display applications.
  • Loading...
    Thumbnail Image
    Article
    Tuning the Shades of Red Emission in InP/ZnSe/ZnS Nanocrystals with Narrow Full Width for Fabrication of Light-Emitting Diodes
    (AMER CHEMICAL SOC, 2023) Soheyli, Ehsan; Bicer, Aysenur; Ozel, Sultan Suleyman; Tiras, Kevser Sahin; Mutlugun, Evren; 0000-0002-1403-7934; 0000-0001-5523-4769; 0000-0003-3715-5594; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Soheyli, Ehsan; Bicer, Aysenur; Ozel, Sultan Suleyman; Mutlugun, Evren
    While Cd-based luminescent nanocrystals (NCs) are the most mature NCs for fabricating efficient red light-emitting diodes (LEDs), their toxicity related limitation is inevitable, making it necessary to find a promising alternative. From this point of view, multishell-coated, red-emissive InP-based NCs are excellent luminescent nanomaterials for use as an emissive layer in electroluminescent (EL) devices. However, due to the presence of oxidation states, they suffer from a wide emission spectrum, which limits their performance. This study uses tris-(dimethyl-amino)-phosphine (3DMA-P) as a low-cost aminophosphine precursor and a double HF treatment to suggest an upscaled, cost-effective, and one-pot hot-injection synthesis of purely red-emissive InP-based NCs. The InP core structures were coated with thick layers of ZnSe and ZnS shells to prevent charge delocalization and to create a narrow size distribution. The purified NCs showed an intense emission signal as narrow as 43 nm across the entire red wavelength range (626-670 nm) with an emission quantum efficiency of 74% at 632 nm. The purified samples also showed an emission quantum efficiency of 60% for far-red wavelengths of 670 nm with a narrow full width of 50 nm. The samples showed a relatively long average emission lifetime of 50-70 ns with a biexponential decay profile. To demonstrate the practical ability of the prepared NCs in optoelectronics, we fabricated a red-emissive InP-based LEDs. The best-performing device showed an external quantum efficiency (EQE) of 1.16%, a luminance of 1039 cd m(-2), and a current efficiency of 0.88 cd A(-1).