Browsing by Author "Ata, Ali"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Research Project Ekran uygulamaları için bulanıklı azaltıcı metal nanotel saydam elektrotlar(TUBİTAK, 2015) Çıtır, Murat; Şen, Ünal; Kılıç, Ahmet; Canlier, Ali; Ata, Ali; 0000-0002-5009-5197; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Çıtır, Murat; Şen, Ünal; Kılıç, Ahmet; Canlier, Ali; Ata, AliGünümüzde kullanılmakta olan İndiyum Kalay Oksit (ITO) saydam elektrotnunun indiyum elementinin doğada az bulunması, malzemelerin ve prosesin pahalı olması, esnek ve dokunmatik ekranlarda ölümcül olabilecek mekanik kırılganlığının olması gibi özellikleri kullanımını sınırlamaktadır. ITO’nun yerine geçebilecek karbon nanotüp, grafen ve metal nanotel elektrotlar gibi gelecek vaat eden saydam iletken malzemeler çalışılmaktadır. Bunlar arasında metal nanoteller, ITO’nun sayılan dezavantajlarını gidermesine ek olarak optik ve elektriksel özelliklerinin en az ITO kadar iyi olmasından dolayı özellikle gelecek vaat etmektedir. Metal nanoteller çözelti sentezi yöntemiyle yüksek verimde üretilebilir ve çözeltiye dağıtılmış nanoteller spin-coating veya sprey yöntemiyle geniş subtratlara kolayca kaplanabilir. Bu devrim niteliğindeki teknoloji özellikle mekanik esneklik isteyen ürünlerde kullanılmak üzere ekran endüstrisine büyük etkisi olacaktır. Önerilen proje kapsamında, hedef geçirgenlik başına nanotel elektrotların iletkenliği iki yöntemle geliştirilmesi amaçlanmaktadır: 1) daha ince ve daha uzun nanoteller sentezleyip kesişim nokta (junction) sayısını azaltmak ve 2) nanoteller üzerindeki oksit tabakasını gidererek ve nanotelleri iletkenliği yüksek altın (veya inert metal) tabakasıyla kaplayarak junction direncini azaltmak. Böylece bu çalışmayla ekran uygulamaları için hedeflenen levha direncine daha az nanotel kullanılarak ulaşılacaktır. Bu durum toplam geçirgenliğin iyileşmesini ve bulanıklık seviyesinin düşmesini sağlayacaktır. Son çalışmalara göre bulanıklık seviyesi 8 ohm/sq levha direnç ve %80 diffusive geçirgenlikte %15 seviyesindedir. Bulanıklık seviyesinin yüksek olması güneş pilleri için bir avantaj iken, yüksek-teknolojik ve askeri uygulamalarda kullanılacak ekranlar için düşük bulanıklık (<5%) seviyesine ihtiyaç vardır. Önerilen projede nanotellerin enboy oranını küçülterek ve junction direncini azaltarak toplam bulanıklığın azaltılmasıyla bu teknolojinin ekranlar için uygun hale gelmesi amaçlanmaktadır.Article Enhancement of Anhydrous Proton Conductivity of Poly(vinylphosphonic acid)-Poly(2,5-benzimidazole) Membranes via In Situ Polymerization(WILEY-V C H VERLAG GMBH, 2015) Sen, Unal; Usta, Hakan; Acar, Oktay; Citir, Murat; Canlier, Ali; Bozkurt, Ayhan; Ata, Ali; 0000-0002-6666-4980; 0000-0003-3736-5049; 0000-0002-0618-1979; 0000-0001-6055-2817; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Sen, Unal; Usta, Hakan; Canlier, Ali; Citir, MuratPolymer electrolyte membranes (PEMs) are synthesized via in situ polymerization of vinylphosphonic acid (VPA) within a poly(2,5-benzimidazole) (ABPBI) matrix. The characterization of the membranes is carried out by using Fourier transform infrared (FTIR) spectroscopy for the interpolymer interactions, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) for the thermal properties, and scanning electron microscopy (SEM) for the morphological properties. The physicochemical characterizations suggest the complexation between ABPBI and PVPA and the formation of homogeneous polymer blends. Proton conductivities in the anhydrous state (150 degrees C) measured by using impedance spectroscopy are considerable, at up to 0.001 and 0.002 S cm(-1) for (1: 1) and (1: 2) molar ratios, respectively. These conductivities indicate signifi cant improvements (> 1000x) over the physically blended samples. The results shown here demonstrate the great potential of in situ preparation for the realization of new PEM materials in future high-temperature and non-humidified polymer electrolyte membrane fuel cell (PEMFC) applications.Article Proton-conducting blend membranes of Nafion/poly(vinylphosphonic acid) for proton exchange membrane fuel cells(SPRINGER, 2013) Acar, Oktay; Celik, Sevim Unugur; Bozkurt, Ayhan; Ata, Ali; Tokumasu, Takashi; Miyamoto, Akira; Sen, Unal; 0000-0003-4201-370X; 0000-0001-6055-2817; 0000-0003-3736-5049; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Sen, UnalNafion/poly(vinylphosphonic acid) blends were synthesized and characterized in this work. Poly(vinylphosphonic acid), PVPA, was synthesized by the free-radical polymerization of vinylphosphonic acid. Then Nafion/PVPA blend membranes were prepared by means of film casting from Nafion/PVPA solutions with several molar ratios of PVPA repeat unit to – SO3H. Homogeneous Nafion/PVPA films were produced. Nafion–PVPA interactions were studied by Fourier transform infrared (FT-IR) spectroscopy. Thermal properties were investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The TGA results illustrated that all of these Nafion/PVPA electrolytes are thermally stable up to 400 °C. The membrane properties were further characterized by studying their morphologies using scanning electron microscopy (SEM). The proton conductivity of the Nafion/P(VPA)3 blend membrane was 1.1×10−5 S/cm in an anhydrous state at 130 °C. The conductivities of the blends increased by at least three orders of magnitude upon hydration, exceeding 10−2 S/cm with RH=50 % at ambient temperature