Browsing by Author "Anjum, Adeel"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Autonomic workload performance tuning in large-scale data repositories(SPRINGER LONDON LTD, 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND, 2019) Raza, Basit; Sher, Asma; Afzal, Sana; Malik, Ahmad Kamran; Anjum, Adeel; Kumar, Yogan Jaya; Faheem, Muhammad; 0000-0002-2024-0699; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği BölümüThe workload in large-scale data repositories involves concurrent users and contains homogenous and heterogeneous data. The large volume of data, dynamic behavior and versatility of large-scale data repositories is not easy to be managed by humans. This requires computational power for managing the load of current servers. Autonomic technology can support predicting the workload type; decision support system or online transaction processing can help servers to autonomously adapt to the workloads. The intelligent system could be designed by knowing the type of workload in advance and predict the performance of workload that could autonomically adapt the changing behavior of workload. Workload management involves effectively monitoring and controlling the workflow of queries in large-scale data repositories. This work presents a taxonomy through systematic analysis of workload management in large-scale data repositories with respect to autonomic computing (AC) including database management systems and data warehouses. The state-of-the-art practices in large-scale data repositories are reviewed with respect to AC for characterization, performance prediction and adaptation of workload. Current issues are highlighted at the end with future directions.Article Performance prediction and adaptation for database management system workload using Case-Based Reasoning approach(PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND, 2018) Raza, Basit; Kumar, Yogan Jaya; Malik, Ahmad Kamran; Anjum, Adeel; Faheem, Muhammad; 0000-0002-2024-0699; 0000-0003-4282-1010; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği BölümüWorkload management in a Database Management System (DBMS) has become difficult and challenging because of workload complexity and heterogeneity. During and after execution of the workload, it is hard to control and handle the workload. Before executing the workload, predicting its performance can help us in workload management. By knowing the type of workload in advance, we can predict its performance in an adaptive way that will enable us to monitor and control the workload, which ultimately leads to performance tuning of the DBMS. This study proposes a predictive and adaptive framework named as the Autonomic Workload Performance Prediction (AWPP) framework. The proposed AWPP framework predicts and adapts the DBMS workload performance on the basis of information available in advance before executing the workload. The Case-Based Reasoning (CBR) approach is used to solve the workload management problem. The proposed CBR approach is compared with other machine learning techniques. To validate the AWPP framework, a number of benchmark workloads of the Decision Support System (DSS) and the Online Transaction Processing (OLTP) are executed on the MySQL DBMS. For preparation of training and testing data, we executed more than 1000 TPC-H and TPC-C like workloads on a standard data set. The results show that our proposed AWPP framework through CBR modeling performs better in predicting and adapting the DBMS workload. DBMSs algorithms can be optimized for this prediction and workload can be controlled and managed in a better way. In the end, the results are validated by performing post-hoc tests. (C) 2018 Elsevier Ltd. All rights reserved.