Browsing by Author "Amuk, Nisa Gul"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Effects of cell-mediated osteoprotegerin gene transfer and mesenchymal stem cell applications on orthodontically induced root resorption of rat teeth(OXFORD UNIV PRESS, GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND, 2017) Amuk, Nisa Gul; Kurt, Gokmen; Baran, Yusuf; Seyrantepe, Volkan; KARTAL YANDIM, Melis; Adan, Aysun; Akyildiz Demir, Secil; Kiraz, Yagmur; Sonmez, Mehmet Fatih; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü;Aim: The aim of this study is to evaluate and compare therapeutic effects of mesenchymal stem cell (MSCs) and osteoprotegerin (OPG) gene transfer applications on inhibition and/or repair of orthodontically induced inflammatory root resorption (OIIRR). Materials and methods: Thirty Wistar rats were divided into four groups as untreated group (negative control), treated with orthodontic appliance group (positive control), MSCs injection group, and OPG transfected MSCs [gene therapy (GT) group]. About 100 g of orthodontic force was applied to upper first molar teeth of rats for 14 days. MSCs and transfected MSC injections were performed at 1st, 6th, and 11th days to the MSC and GT group rats. At the end of experiment, upper first molar teeth were prepared for genetical, scanning electron microscopy (SEM), fluorescent microscopy, and haematoxylin eosin-tartrate resistant acid phosphatase staining histological analyses. Number of total cells, number of osteoclastic cells, number of resorption lacunae, resorption area ratio, SEM resorption ratio, OPG, RANKL, Cox-2 gene expression levels at the periodontal ligament (PDL) were calculated. Paired t-test, Kruskal-Wallis, and chi-square tests were performed. Results: Transferred MSCs showed marked fluorescence in PDL. The results revealed that number of osteoclastic cells, resorption lacunae, resorption area ratio, RANKL, and Cox-2 were reduced after single MSC injections significantly (P < 0.05). GT group showed the lowest number of osteoclastic cells (P < 0.01), number of resorption lacunae, resorption area ratio, and highest OPG expression (P < 0.001). Conclusions: Taken together all these results, MSCs and GT showed marked inhibition and/or repair effects on OIIRR during orthodontic treatment on rats.Article A minimally invasive transfer method of mesenchymal stem cells to the intact periodontal ligament of rat teeth: a preliminary study(TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY, ATATURK BULVARI NO 221, KAVAKLIDERE, ANKARA, 00000, TURKEY, 2018) Amuk, Nisa Gul; Kurt, Gökmen; Kartal Yandım, Melis; Adan, Aysun; Baran, Yusuf; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü;The aim of this study was to introduce a minimally invasive procedure for mesenchymal stem cell (MSC) transfer into the intact periodontal ligament (PDL) of the molar teeth in rats. Ten 12-week-old Wistar albino rats were used for this preliminary study. MSCs were obtained from bones of two animals and were labeled with green fluorescent protein (GFP). Four animals were randomly selected for MSC injection, while 4 animals served as a control group. Samples were prepared for histological analysis, Cox-2 mRNA expression polymerase chain reaction analysis, and fluorescent microscopy evaluation. The number of total cells, number of osteoclastic cells, and Cox-2 mRNA expression levels of the periodontal tissue of teeth were calculated. The number of total cells was increased with MSC injections in PDL significantly (P < 0.001). The number of osteoclastic cells and Cox-2 mRNA expression were found to be similar for the two groups. GFP-labeled MSCs were observed with an expected luminescence on the smear samples of the PDL with transferred MSCs. The results of this preliminary study demonstrate successful evidence of transferring MSCs to intact FIX in a nonsurgical way and offer a minimally invasive procedure for transfer of MSCs to periodontal tissues.