Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Akgul, Selcuk"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 54
    Citation - Scopus: 59
    A Detailed Investigation of the Electronic Properties of a Multi-Layer Spherical Quantum Dot With a Parabolic Confinement
    (Elsevier Science Bv, 2012) Akgul, Selcuk; Sahin, Mehmet; Koksal, Koray
    In this work, we aim a detailed investigation of the electronic properties of a spherical multi-layer quantum dot with and without a hydrogenic impurity. The structure is introduced in the form of core/shell/well/shell layers. The core and well layers are defined by the parabolic electronic potentials. We carry out the effect of the core radius and layer thickness on the energy levels, their wave functions, binding energies of the impurity and the probability distributions. In order to determine the sublevel eigenvalues and eigenfunctions, the Schrodinger equation is solved full numerically by shooting method in the frame of the effective mass approximation. The results are analyzed in detail as a function of the layer thicknesses and their probable physical reasons are tried to be explained. It is found that the electronic properties and impurity binding energies are strongly depending on the layer thicknesses. (C) 2012 Elsevier B.V. All rights reserved.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback