Browsing by Author "Şenel, Zeynep"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
doctoralthesis.listelement.badge Design and implementation of nanophotonic architectures using smart-self assembly of colloidal nanomaterials(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Şenel, Zeynep; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim DalıDNA-driven self-assembly techniques offer precise control over the positioning of colloidal nanoparticles through specific Watson–Crick interactions, and its reversibility via controlling the temperature of medium. This thesis explores an alternative strategy to control DNA-functionalized nanoparticles' binding/unbinding process by leveraging laser radiation, inducing localized heating within the nanoparticles to facilitate disassociation. First, we demonstrate the active manipulation of the optical properties of DNA-assembled gold nanoparticle networks via external optical excitation. Specifically, irradiation with a green hand-held laser yields a substantial ∼30% increase in total transmittance, accompanied by a transition from opaque to transparent states observable in optical microscopy images. The reversibility of this process is demonstrated by the restoration of the nanoparticle network post-irradiation cessation, underscoring the efficacy of optical excitation in tailoring both the structure and optical characteristics of DNA-mediated nanoparticle assemblies. Second, we introduce a method to tailor DNA-driven self-assembly of semiconductor nanoparticles on glass by applying an external optical field. A green laser directs the assembly of DNA-functionalized red-emitting quantum dots (QDs) on DNA-functionalized glass, leaving uncoated spots owing to localized heating. This effect becomes prominent after three hours of radiation using a laser with an irradiance of 57.1 W/cm2. Experiments with different lasers and nanoparticle types confirm the role of laser-induced heating in preventing QD-glass bonding via DNA-DNA interaction. Secondary coating of previously uncoated spots with DNA-functionalized green-emitting QDs and dye-functionalized DNAs indicates a successful hierarchical self-assembly. Our findings highlight the potential of light-assisted DNA-driven self-assembly for diverse nanoparticle architectures, promising applications in optoelectronics and nanophotonics.