Enstitüler
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/391
Browse
Browsing Enstitüler by Author "0000-0002-0912-3459"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Pre-concentration of Municipal Wastewater Using Flocculation-Assisted Direct Ceramic Microfiltration Process: Optimization of Operational Conditions(SPRINGER INT PUBL AG, 2022) Ozcan, Ozlem; Sahinkaya, Erkan; Uzal, Nigmet; 0000-0002-0912-3459; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, Niğmet; Özcan, ÖzlemDirect ceramic microfiltration (DCMF) is an effective technology to pre-concentrate organic matter (OM) for the subsequent anaerobic energy-recovering processes and a fast, cost-effective, easy treatment process for municipal wastewater. The major problem in DCMF is the rapid fouling of the membrane. In this study, to maximize OM recovery rates and prevent membrane fouling, the DCMF process was alternately paired with dosing of a cationic polyacrylamide (PAM) flocculant and chemically enhanced primary sedimentation (CEPS). The DCMF process tested in three stages: (i) optimization of flocculant concentration (0.5, 1, 1.5, and 2 mg/L PAM) and dosing point, (ii) optimization of operational conditions (pH, filtration/backwash duration, flux, and recovery rate) to control membrane fouling, and (iii) long-term operation of the DCMF process. The influence of PAM dosage points on DCMF fouling behavior was explored, and system operating parameters in terms of OM recovery and TMP change were optimized. The CEPS + DCMF setup was discovered to be a potential option for overcoming fouling. The highest chemical oxygen demand (COD) was 520 +/- 20 mg/L in the concentrated wastewater using CEPS + DCMF experiments for 0.5 mg/L PAM. The highest OM pre-concentration was achieved at 90% recovery rate. After the optimization, COD concentration in the concentrate of the DCMF process reached 822 mg/L for the long-term (20 days) operation. The net potential energy production was calculated as 0.28 kWh/m(3) considering the theoretical COD of 1432 mg/L in the concentrate stream. As a novel approach, the CEPS + DCMF process can be used in place of conventional municipal wastewater treatment processes due to its acceptable OM removal performance, simple operation, small footprint, and potential energy generation.Article Robust Multicriteria Sustainability Assessmentin Urban Transportation(ASCE-AMER SOC CIVIL ENGINEERS, 2023) Gulcimen, Sedat; Aydogan, Emel Kizilkaya; Uzal, Nigmet; 0000-0002-8967-3484; 0000-0002-0912-3459; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Gulcimen, Sedat; Uzal, NigmetDeveloping methodologies to facilitate the planning of sustainable transport systems for decision makers (DMs) is becoming more critical. This study proposed a methodological framework for sustainable urban transportation to make decisions during urban transportation's design and planning stages. Urban transportation alternatives were evaluated by sustainability indicators that considered a triple bottom line approach's environmental, economic, and social aspects. To choose the best alternative sustainable transportation scenarios, two multicriteria decision-making (MCDM) methods, for example, a hesitant fuzzy analytical hierarchy process (HF-AHP) and multiple attribute utility model (MAUT), were integrated. First, eight sustainable transportation indicators that considered data availability from the transport sector were selected. The weights of the selected indicators were calculated using an HF-AHP. These indicators included carbon dioxide (CO2) emissions, energy consumption, depletion of nonrenewable resources, operational and maintenance costs, fuel and taxes, the number of fatalities or injuries, and motor vehicles for public transport per 10,000 population. Finally, sensitivity analysis was applied to validate the robustness. Based on HF-AHP results, the number of fatalities or injuries was the most significant among the eight indicators, with a 0.158 normalized weight (N-i). The results of this integrated methodology highlighted that Alternative 11, which was dominated by low-motorized vehicles (low-MVs), was the best sustainable alternative and Alternative 1 was the worst sustainable alternative, which was dominated by high-MVs with 0.69 and 0.27 total utility values, respectively. Low-motorized urban transportation alternatives showed higher sustainable performances than the motorized and high-motorized alternatives. This study proposed a novel and robust methodology for decisions on sustainable urban transportation projects and renovating current urban transportation systems.