Yaşam ve Doğa Bilimleri Fakültesi
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/39
Browse
Browsing Yaşam ve Doğa Bilimleri Fakültesi by Access Right "info:eu-repo/semantics/closedAccess"
Now showing 1 - 20 of 71
- Results Per Page
- Sort Options
Article 3-Sulfopropyl methacrylate based cryogels as potential tissue engineering scaffolds(TAYLOR & FRANCIS LTD, 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND, 2019) Durukan, Adile Yuruk; Isoglu, Ismail Alper; 0000-0001-6428-4207; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüIn this study, we developed cryogels containing 3-sulfopropyl methacrylate (SPMA) and 4-vinyl pyridine (4-VP) as a potential scaffold for tissue engineering applications. Cryogels with varying monomer ratios were synthesised by chemical cross-linking under cryogelation conditions. Effect of initiators and cross-linker amount (0.025-0.15 g MBA; 0.012-0.05 g APS; 2.5-12.5 mu l TEMED) and also freezing temperature (-20 and -80oC) were investigated, and the conditions were optimised according to the morphological structures examined by SEM. The functional groups of the materials were characterised by FT-IR. Compression test and swelling were applied to investigate mechanical properties and water absorption ability, respectively. As a preliminary study, selected materials were tested for cell cytotoxicity with MTT. According to our results, the ionic and biocompatible cryogels prepared in this study possessing a highly porous and interconnective structure with good mechanical characteristics and swelling properties can be suitable as tissue scaffolds for many applications.Review Advances in Micelle-based Drug Delivery: Cross-linked Systems(BENTHAM SCIENCE PUBL LTDEXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES, 2017) Isoglu, Ismail Alper; Ozsoy, Yildiz; Isoglu, Sevil Dincer; 0000-0002-6887-6549; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüThere are several barriers that drug molecules encounter in body beginning from kidney filtration and reticulo-endothelial system (RES) clearance to cellular trafficking. Multifunctional nanocarriers have a great potential for the delivery of drugs by enhancing therapeutic activity of existing methodologies. A variety of nanocarriers are constructed by different material types, which have unique physicochemical properties for drug delivery applications. Micelles formed by amphiphilic polymers are one of the most important drug/nanocarrier formulation products, in which the core part is suitable for encapsulation of hydrophobic agent whereas the outer shell can be utilized for targeting the drug to the disease area. Micelles as self-assembled nanostructures may encounter difficulties in biodistribution of encapsulated drugs because they have a tendency to be dissociated in dilution or high ionic strength. Therefore, therapeutic efficiency is decreased and it requires high amount of drug to be administered to achieve more efficient result. To overcome this problem, covalently stabilized structures produced by cross-linking in core or shell part, which can prevent the micelle dissociation and regulate drug release, have been proposed. These systems can be designed as responsive systems in which cross-links are degradable or hydrolysable under specific conditions such as low pH or reductive environment. These are enhancing characteristics in drug delivery because their cleavage allows the release of bioactive agent encapsulated in the carrier at a certain site or time. This review describes the chemical methodologies for the preparation of cross-linked micelles, and reports an update of latest studies in literature.Article Alantolactone ameliorates graft versus host disease in mice(ELSEVIER, 2024) Odabas, Gul Pelin; Aslan, Kubra; Suna, Pinar Alisan; Kendirli, Perihan Kader; Erdem, Şerife; Çakır, Mustafa; Özcan, Alper; Yılmaz, Ebru; Karakukcu, Musa; Donmez-Altuntas, Hamiyet; Yay, Arzu Hanim; Deniz, Kemal; Altay, Derya; Arslan, Duran; Canatan, Halit; Eken, Ahmet; Unal, Ekrem; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Kendirli, Perihan KaderThe anti-inflammatory and immunosuppressive drugs which are used in the treatment of Graft-versus-Host Disease (GVHD) have limited effects in controlling the severity of the disease. In this study, we aimed to investigate the prophylactic effect of Alantolactone (ALT) in a murine model of experimental GVHD. The study included 4 BALB/c groups as hosts: Naïve (n = 7), Control GVHD (n = 16), ALT-GVHD (n = 16), and Syngeneic transplantation (n = 10). Busulfan (20 mg/kg/day) for 4 days followed by cyclophosphamide (100 mg/kg/day) were administered for conditioning. Allogeneic transplantation was performed with cells collected from mismatched female C57BL/6, and GVHD development was monitored by histological and flow cytometric assays. Additionally, liver biopsies were taken from GVHD patient volunteers between ages 2–18 (n = 4) and non-GVHD patients between ages 2–50 (n = 5) and cultured ex vivo with ALT, and the supernatants were used for ELISA. ALT significantly ameliorated histopathological scores of the GVHD and improved GVHD clinical scores. CD8+ T cells were shown to be reduced after ALT treatment. More importantly, ALT treatment skewed T cells to a more naïve phenotype (CD62L+ CD44− ). ALT did not alter Treg cell number or frequency. ALT treatment appears to suppress myeloid cell lineage (CD11c+). Consistent with reduced myeloid lineage, liver and small intestine levels of GM-CSF were reduced in ALT-treated mice. IL-6 gene expression was significantly reduced in the intestinal tissue. Ex vivo ALT-treated liver biopsy samples from GVHD patients showed a trend of decrease in proinflammatory cytokines but there was no statistical significance. Collectively, the data indicated that ALT may have immunomodulatory actions in a preclinical murine GVHD model.Article Amelioration potential of synthetic oxime chemical cores against multiple sclerosis and Alzheimer's diseases: Evaluation in aspects of in silico and in vitro experiments(ELSEVIER, 2024) Yilmaz, Anil; Koca, Murat; Ercan, Selami; Acar, Ozden Ozgun; Boga, Mehmet; Sen, Alaattin; Kurt, Adnan; 0000-0002-8444-376X; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Sen, AlaattinAlzheimer disease (AD) and multiple sclerosis (MS) are inflammatory neurological disorders. The main symptom of AD is dementia, and the main symptoms of MS are vertigo, sexual dysfunction, cognitive problems, and fatigue. Today, millions of people are affected by AD and MS, and the number is growing day by day. However, there are not any accurate remedies for both disorders. For this reason, discovering novel drug molecules against neurological disorders such as AD and MS is essential and precious. Oximes and benzofurans exhibit many pharmacological effects including anti-inflammatory and neurological activities. Thus, several novel compounds bearing oxime and benzofuran chemical cores were designed and synthesized, and their in vitro anticholinesterase activities were investigated in our previous study. A number of the synthesized molecules showed excellent anticholinesterase activity against both AChE and BChE enzymes. The mentioned study constituted a background for this study. In this study, we picked different chemical skeletons among all the synthesized molecules to conduct further in silico and in vitro experiments. In order to support our in vitro anticholinesterase findings, we also examined in silico anti-Alzheimer activity of the selected molecules. In addition, in silico and in vitro activities against MS disease of the synthesized molecules were investigated. Molecule 4 extraordinarily showed outstanding activity against AD disease both in silico and in vitro, as well as in silico activity against MS disease. This feature makes molecule 4 a possible drug lead molecule which is very limited in the market. On the other hand, molecule 1, a less substituted oxime skeleton, demonstrated the strongest in vitro activity against MS disease through in vitro anti-inflammatory effect. As an observation, molecule 4 was determined to be the most promising molecule to focus on in the further steps.Article Antibacterial Bilayered Skin Patches Made of HPMA and Quaternary Poly(4-vinyl pyridine)(KOREAN FIBER SOC, KOREA SCIENCE TECHNOLOGY CTR #501 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA, 2018) Isoglu, I. Alper; Demirkan, Cemre; Seker, Mine Gul; uzlakoglu, Kadriye; Isoglu, Sevil Dincer; 0000-0002-6887-6549; 0000-0002-6226-7507; 0000-0002-7564-9213; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüThis study aimed to produce poly(4-vinyl pyridine) and hydroxypropyl methacrylamide (HPMA)-based bilayer wound dressings materials enhancing healing mechanism for the wounds which have self-healing problem and high infection risk. These materials were designed to protect wound from secondary traumas caused microorganism invasion and do not have toxic substance release problem. Synthesis of quaternary poly(4-vinyl pyridine) (poly(Q4-VP)) which is the antibacterial layer of wound dressing material was carried out in two stages. At first stage, poly(4-vinyl pyridine) polymer was synthesized from 4-vinyl pyridine monomer by free radical polymerization. Then, poly(Q4-VP) was synthesized from poly(4-VP) by alkylation reaction with 6-bromocaproic acid. Resulted polymer was structurally characterized by FT-IR. The macroporous spongy structure, as the lower layer of wound dressing material, was prepared by cryogelation of HPMA. Then, the antibacterial polymer was electrospun onto the cryogel structure and bilayered material was obtained. Cryogel structure, fiber morphology and layer integration was examined by SEM. In order to enhance wound healing process, ascorbic acid (vitamin C) was loaded to cryogel layer and release was followed by spectrophotometrically. The antimicrobial properties of the materials were examined against Escherichia coli, Staphylococcus aureus and Candida albicans, respectively. According to the results, bilayered, antibacterial and antifungal against Staphylococcus aureus and Candida albicans, temporary wound dressings which can stimulate wound healing and have high swelling capacity were obtained successfully.Article Bovine serum albumin (BSA)-Loaded polyvinyl alcohol (PVA) / chitosan (CH) / hydroxyapatite (HA) electrospun nanofibers for bone tissue regeneration(ELSEVIER, 2025) Bozdag, Mehmet; Urek, Ferhat; Cesur, Sumeyye; Sahin, Ali; Gunduz, Oguzhan; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Urek, FerhatThe natural bone structure consists of three different nanocomposite layers; a porous polymer ceramic part, a lamellar, and a fiber-matrix composition gives the bone its unique physical and biological properties. During bone tissue regeneration bioactivity, and osteoinductivity are especially important with other parameters such as porosity, degradation rate, and cell adhesion. In this study, hydroxyapatite (HA) and bovine serum albumin (BSA) protein-loaded, polyvinyl alcohol (PVA) and chitosan (CH) nanofibers were fabricated via the electrospinning method. The mean diameters of PVA/CH/HA/BSA-5, PVA/CH/HA/BSA-10, and PVA/CH/HA/BSA-15 nanofibers were measured as 325.39 +/- 77.512 nm, 332.45 +/- 82.251 nm, 447.03 +/- 101.382 nm respectively, required porosity and properties for bone tissue engineering were considered achieved. BSA release profiles of BSA-5, BSA-10, and BSA-15 nanofibers were similar in terms of burst release which continued until the 12th hour, 58 %, 78 %, and 73 % of the BSA were released, respectively. After 72 h 100 % of BSA were released from all nanofibers. Cell viability tests showed that PVA/CH/HA/BSA nanofibers exceeded the control group in terms of cell viability by 119.9 %. In future bone injury treatment, PVA/CH/HA/BSA nanofibers can assist the healing process of cracks and fractures, and decrease the recovery time of bone as an alternative bone healing nanofiber.Article Can mesenchymal stem/stromal cells and their secretomes combat bacterial persisters?(SPRINGER, 2023) Bicer-Çalışkan, Mesude; Fidan, Ozkan; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Bicer-Çalışkan, Mesude; Fidan, OzkanThe increasing number of life-threatening infections caused by persister bacteria is associated with various issues, including antimicrobial resistance and biofilm formation. Infections due to persister cells are often difficult to suppress without the use of last-resort antibiotics. Throughout the world, bacterial persistence and resistance create an unmet clinical demand for the exploration of newly introduced therapeutic approaches. Mesenchymal stem / stromal cells (MSCs) have an antimicrobial activity to protect against bacterial infections, including those caused by bacterial persisters. MSCs have substantial potential to secrete antimicrobial peptides (AMPs), including cathelicidin, beta-defensins, lipocalin-2, hepcidin, indoleamine 2,3-dioxygenase (IDO), cysteine proteases, and inducible nitric oxide synthases (iNOS). MSCs possess the potential to contribute to innate immunity by regulating the immune response. Recently, MSCs and their secreted components have been reported to improve antimicrobial activity. Bactericidal activity by MSCs and their secretomes has been shown to be mediated in part by the secretion of AMPs. Even though they were discovered more than 80 years ago, therapeutic options for persisters are restricted, and there is an urgent need for alternative treatment regimens. Hence, this review intends to critically assess the current literature on the effects of MSCs and their secretomes on persister bacteria. MSCs and their secretome-based therapies could be preferred as an up-and-coming approach to reinforce the antimicrobial efficiency in persister infections.conferenceobject.listelement.badge CC2D1A AS A NOVEL CILIOPATHY GENE(SPRINGERNATURE, CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND, 2020) Sakin, I.; Tuncel, G.; Sag, S. Ozemri; Kaplan, O. I.; Khokha, M. K.; Ergoren, M. C.; Deniz, E.; Temel, S. G.; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüÖzet bulunamamıştırReview Cell Proliferation and Cytotoxicity Assays(BENTHAM SCIENCE PUBL LTDEXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES, 2016) Adan, Aysun; Kiraz, Yagmur; Baran, Yusuf; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Adan, Aysun; Kiraz, Yagmur; Baran, YusufCell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms in action of certain genes, proteins and pathways involved cell survival or death after exposing to toxic agents. Generally, methods used to determine viability are also common for the detection of cell proliferation. Cell cytotoxicity and proliferation assays are generally used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. Regardless of the type of cell-based assay being used, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be basically classified into different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) raman micro-spectroscopy. In order to choose the optimal viability assay, the cell type, applied culture conditions, and the specific questions being asked should be considered in detail. This particular review aims to provide an overview of common cell proliferation and cytotoxicity assays together with their own advantages and disadvantages, their methodologies, comparisons and intended purposes.Article Centella AsiaticaExtract Containing Bilayered Electrospun Wound Dressing(KOREAN FIBER SOC, KOREA SCIENCE TECHNOLOGY CTR #501 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA, 2020) Isoglu, Ismail Alper; Koc, Nuray; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüInnovative and bioactive wound dressings prepared by electrospinning mimicking the native structure of the extracellular matrix (ECM) have gained significant interest as an alternative to conventional wound care applications. In this study, bilayered wound dressing material was produced by sequential electrospinning of quaternized poly(4-vinyl pyridine) (upper layer) on theCentella Asiatica(CA) extract containing electrospun poly(D, L-lactide-co-glycolide) (PLGA)/poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) blend membrane (lower layer). Scanning electron microscopy (SEM) was utilized to show a uniform and bead-free fiber structure of electrospun membranes. The average diameter of CA extract containing electrospun PLGA/PHBV blend membrane was calculated 0.471 +/- 0.11 mu m, whereas the average fiber diameter of electrospun poly(Q-VP) membranes was in the range of 0.460 +/- 0.057 mu m. Chemical, thermal, mechanical properties, and adsorption capacity of electrospun membranes, as well as the cumulative release of CA from the electrospun PLGA/PHBV membrane, were investigated. Viability, adhesion, and attachment of human fibroblast cells on the electrospun membranes on pre-set days were evaluated by the colorimetric CellTiter 96 (R) Aqueous One Solution Cell Proliferation Assay (MTS assay) and SEM. Results revealed that CA loaded bilayered electrospun wound dressing showed promoted attachment and proliferation of fibroblasts. Hence, it can be concluded that CA extract containing bilayered electrospun wound dressing prepared in this study has a promising potential for wound healing applications.conferenceobject.listelement.badge Ceramide is a key factor that regulates the crosstalk between TGF-beta and sonic hedgehog signaling at the basal cilia to control cell migration and tumor metastasis(ELSEVIER SCI LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND, 2016) Gencer, Salih; Ogretmen, Besim; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Gencer, SalihCeramide is a key factor that regulates the crosstalk between TGF-beta and sonic hedgehog signaling at the basal cilia to control cell migration and tumor metastasisconferenceobject.listelement.badge Ceramide is A Key Factor That Regulates The Crosstalk Between TGF-beta and Sonic Hedgehog Signaling at The Basal Cilia To Control Cell Migration and Tumor Metastasis(WILEY111 RIVER ST, HOBOKEN 07030-5774, NJ, 2016) Gencer, Salih; Oleinik, Natalia; Dany, Mohammed; Ogretmen, Besim; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Gencer, SalihCeramide is A Key Factor That Regulates The Crosstalk Between TGF-beta and Sonic Hedgehog Signaling at The Basal Cilia To Control Cell Migration and Tumor MetastasisArticle Cerium Oxide Nanoparticles Biosynthesized Using Fresh Green Walnut Shell in Microwave Environment and their Anticancer Effect on Breast Cancer Cells(John Wiley and Sons Inc, 2022) Sulak, Mine; Turgut, Gurbet Celik; Sen, Alaattin; 0000-0002-8444-376X; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Sen, AlaattinIn this study, cerium oxide nanoparticles (CONPs) were synthesized using fresh green walnut shell extract in microwave environment. The morphology and structure of the CONPs were determined using ultraviolet-visible (UV/VIS), attenuated total reflection-Fourier transform infrared (ATR-FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). Crystal purple staining, Annexin V-FITC detection, RT-PCR, P53, and NF-κB luciferase reporter assays were performed to evaluate the mechanism of action of CONPs in breast cancer cell lines (MCF7). The biosynthesized CONPs showed cytotoxic effects and induced apoptosis in MCF7 cells. Furthermore, CONPs induced P53 expression and suppressed NF-κB gene expression, both of which were confirmed using reporter assays. Based on the present results, it was concluded that CONPs can induce apoptosis by acting on P53 at the transcriptional level and may cause cell death by suppressing NF-κB-mediated transcription.Other Classification of Breast Cancer Molecular Subtypes with Grouping-Scoring-Modeling Approach that Incorporates Disease-Disease Association Information(IEEE Xplore, 2024) Qumsiyeh, Emma; Bakir-Gungor, Burcu; Yousef, Malik; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakir-Gungor, BurcuThis study uses modern sequencing technology and large biological databases to investigate the molecular intricacies of complicated diseases like cancer. Using gene expression databases and biomarkers, the research aims to improve breast cancer molecular subtype identification for better patient outcomes. Using BRCA LumAB_ Her2Basal dataset, this study compares an integrative machine learning-based strategy (GediNET) to traditional feature selection approaches across machine learning classifiers. GediNET excels at uncovering crucial disease-disease connections and potential biomarkers using the Grouping-Scoring-Modeling (GSM) approach, which favors gene groupings above individual genes. Our comparative analysis highlights GediNET's exceptional performance, notably in terms of accuracy and Area Under the Curve metrics, underscoring its effectiveness in uncovering the genetic intricacies of breast cancer. GediNET's promise to improve disease classification and biomarker identification by improving biological mechanism understanding goes beyond exceeding traditional approaches. The work shows that GediNET's integrative method can promote bioinformatics research by identifying the most informative genes associated with certain diseases, enabling focused and customized medicine.Article Combination of the Simple Additive (SAW) Approach and Mixture Design to Determine Optimum Cocoa Combination of the Hot Chocolate Beverage(TAYLOR & FRANCIS INC, 2015) DOGAN, Mahmut; Aktar, Tugba; Toker, Omer Said; Tatlisu, Nevruz Berna; 0000-0001-8417-868X; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Aktar, TugbaPhysicochemical (pH, brix, and color), sensory (color, taste, odor, mouthfeeling, consistency, bitter flavor, and general acceptability), and rheological properties of the hot chocolate beverages including different cocoa combinations were investigated in the present study. Cocoa type significantly affected all of the properties. Simple additive weighting approach was applied to obtain one score from seven different sensory parameters and simple additive weighting score was used in mixture design to determine optimum cocoa type or cocoa combination. Ostwald de Waele model described the flow behavior of the hot chocolate beverage samples with R2 values ranged between 0.818 and 0.999. The consistency coefficient (K) and apparent viscosity at shear rate 50 s−1 (η50) were significantly affected by cocoa type found in the formulation of the beverage. The mixture design approach was performed in order to determine variation of the responses (physicochemical, sensory, and rheological parameters) as a function of cocoa concentration. Simple additive weighting scores were satisfactorily described by established equation as a function of cocoa concentration to be used in the formulation of the hot chocolate beverage (R2 = 0.8645).conferenceobject.listelement.badge Common miRNA signatures in a group of rare neuromuscular disorders(WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, 2018) Aksu, E; Akkaya-Ulum, Y. Z; Balci-Peynircioglu, B.; Dayangac-Erden, D.; Yuzbasioglu, A.; Bakir-Gungor, B.; Talim, B.; Balci-Hayta, B.; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik BölümüCommon miRNA signatures in a group of rare neuromuscular disordersbookpart.listelement.badge Computational Detection of Pre-microRNAs(Humana Press Inc., 2022) Saçar Demirci, Müşerref Duygu; 0000-0003-2012-0598; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Saçar Demirci, Müşerref DuyguMicroRNA (miRNA) studies have been one of the most popular research areas in recent years. Although thousands of miRNAs have been detected in several species, the majority remains unidentified. Thus, finding novel miRNAs is a vital element for investigating miRNA mediated posttranscriptional gene regulation machineries. Furthermore, experimental methods have challenging inadequacies in their capability to detect rare miRNAs, and are also limited to the state of the organism under examination (e.g., tissue type, developmental stage, stress-disease conditions). These issues have initiated the creation of high-level computational methodologies endeavoring to distinguish potential miRNAs in silico. On the other hand, most of these tools suffer from high numbers of false positives and/or false negatives and as a result they do not provide enough confidence for validating all their predictions experimentally. In this chapter, computational difficulties in detection of pre-miRNAs are discussed and a machine learning based approach that has been designed to address these issues is reviewed.Article Computational Prediction of Functional MicroRNA-mRNA Interactions(HUMANA PRESS INC, 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA, 01.01.2019) Demirci, Muserref Duygu Sacar; Yousef, Malik; Allmer, Jens; 0000-0003-2012-0598; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüProteins have a strong influence on the phenotype and their aberrant expression leads to diseases. MicroRNAs (miRNAs) are short RNA sequences which posttranscriptionally regulate protein expression. This regulation is driven by miRNAs acting as recognition sequences for their target mRNAs within a larger regulatory machinery. A miRNA can have many target mRNAs and an mRNA can be targeted by many miRNAs which makes it difficult to experimentally discover all miRNA-mRNA interactions. Therefore, computational methods have been developed for miRNA detection and miRNA target prediction. An abundance of available computational tools makes selection difficult. Additionally, interactions are not currently the focus of investigation although they more accurately define the regulation than pre-miRNA detection or target prediction could perform alone. We define an interaction including the miRNA source and the mRNA target. We present computational methods allowing the investigation of these interactions as well as how they can be used to extend regulatory pathways. Finally, we present a list of points that should be taken into account when investigating miRNA-mRNA interactions. In the future, this may lead to better understanding of functional interactions which may pave the way for disease marker discovery and design of miRNA-based drugs.Article Computational prediction of microRNAs in Histoplasma capsulatum(ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND, 2020) Demirci, Mueserref Duygu Sagar; 0000-0003-2012-0598; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüMicroRNAs (miRNAs) are small and non-coding RNAs that regulate gene expression through post-transcriptional regulation. Although, the standard miRNA repository, MiRBase, lists more than 200 organisms having miRNA mediated regulation mechanism and thousands of miRNAs, there is not enough information about miRNAs of fungal species. Considering that there are various fungal pathogens causing disease phenotypes, it is important to search for miRNAs of those organisms. The leading cause of endemic mycosis in the USA is a fungal disease known as histoplasmosis, which is resulted by infection with a fungal intracellular parasite, Histoplasma capsulatum (H. capsulatum). In this work, genomes of H. capsulatum strains NAm1 and G217B were explored for potential miRNA like sequences and structures. Through a complex workflow involving miRNA detection and target prediction, several miRNA candidates of H. capsulatum and their possible targets in human were identified. The results presented here indicate that H. capsulatum might be one of the fungal pathogens having a miRNA based post-transcriptional gene regulation mechanism and it might have a miRNA mediated host - parasite interaction with human.conferenceobject.listelement.badge Computer-Aided Classification of Breast Cancer Histopathological Images(IEEE345 E 47TH ST, NEW YORK, NY 10017 USA, 2017) Aksebzeci, Bekir Hakan; Kayaalti, Omer; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik BölümüNowadays, one of the most common types of cancer is breast cancer. The early and accurate diagnosis of breast cancer has great importance in the treatment of the disease. In the diagnosis of breast cancer, histopathological analysis of cell and tissue specimens taken by biopsy is considered as the gold standard. Histopathological analysis is a tedious process that is highly dependent on the knowledge and experience of the pathologists. In this study; it is aimed to develop a computer-aided system that can reduce the workload of pathologists and help them in their diagnosis. An image set containing benign and malignant tumor images of breast cancer has been studied. To perform texture analysis on tumor images; first order statistics, Gabor and gray-level co-occurrence matrix (GLCM) feature extraction methods have been applied. Then, various classifiers were applied to the obtained feature matrices and their performances were compared. The highest classification accuracy was achieved 82.06% by Random Forests classifier with feature combination of Gabor and GLCM methods. The results presented here show that computer-assisted diagnosis of breast cancer is a promising field.