Aydın, ZaferTAŞDEMİR, SENA BÜŞRA YENGEÇTaşdemir, Sena Büşra Yengeç01. Abdullah Gül University02. 04. Bilgisayar Mühendisliği02. Mühendislik Fakültesi2020-07-212020-07-2120182018Tez No: 541544https://hdl.handle.net/20.500.12573/322https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=T1mWGp9MngYYkCSgiJvtVoe4sFO7JvdaSLgq-ZciIt2Gx2s8vFK73ygod-Hk2zcIKadınlarda, kanser ölümünün önde gelen nedeni ve en sık görülen kanser türü meme kanseridir. Erken teşhisi ölüm oranını azaltır, bu nedenle erken teşhis çok önemlidir. Dijital mamografi, meme kanserinin erken teşhisi ve tanısında kullanılan yaygın bir tıbbi görüntüleme tekniğidir. İlgili bölgenin (ROI) otomatik olarak saptanması, bir radyolog tarafından daha fazla analiz edilebilecek şekilde anormal alanları işaretlenmesine yardımcı olur. ROI'nin otomatik algılanması, özellik çıkarımı ve sınıflandırılması olmak üzere iki ana aşamaya sahiptir. Öznitelik çıkarma, görüntüyü bir bilgisayar için daha anlaşılır olan başka bir boyuta dönüştürür. İkinci adım, sınıflandırıcı tarafından yapılan kararı (normal veya ROI) içerir. Bu çalışmada, 2D-DWT, HOG, Haralick'in dokusal özellikleri, TAS, LBP, Zernike ve GLCM gibi farklı öznitelik çıkarma yöntemleri kullanılmıştır. Sistemin performansını değerlendirmek için, gerçeklenen sınıflandırıcılar; rastgele orman, lojistik regresyon, k-en yakın komşular (k-NN), naïve Bayes, karar ağacı, destek vektör makinesi (SVM), Adaboost, radyal temelli fonksiyon ağı (RBF-NN), çok katmanlı algılayıcı (MLP), konvolüsyonel sinir ağı (CNN) kullanılmıştır. Kapsamlı deneyler neticesinde, optimum başarıyı veren özellik çıkarma, özellik seçimi ve sınıflandırma yöntemleri tespit edilmiştir. Önerilen yeni ROI tanıma yönteminde görüntü ön işleme aracı olarak CLAHE, öznitelik çıkarmak için 2D-DWT, HOG, Haralick, özellik seçim yöntemi olarak wrapper ve sınıflandırıcı olarak rastgele orman yöntemi kullanılmış ve % 87.5'lik bir doğruluk oranı elde edilmiştir.Among females, leading cause of cancer death and the most common cancer type is breast cancer. Early detection is vital because it reduces the mortality rate. Digital mammography is a widespread medical imaging technique that is used for early detection and diagnosis of the breast cancer. Automatic detection of tumorous area from the digital mammography image helps to locate the abnormal tissues, which may be analyzed further by a radiologist. It has two main stages: feature extraction and classification. In this work, numerous feature extraction methods have been tested such as 2D-DWT, HOG, Haralick's textural features, TAS, LBP, Zernike and GLCM. In order to select the most suitable classifier, the following classifiers also have been tested: random forest, logistic regression, k-nearest neighbors, naïve Bayes, decision tree, support vector machines, Adaboost, radial basis function network, multilayer perceptron, convolutional neural network. Based on comprehensive experiments, the optimum combination of feature extraction, feature selection and classification methods are identified. The proposed method, which employs CLAHE as image pre-processing tool, 2D-DWT, HOG, Haralick as feature extraction methods, wrapper as the feature selection method and random forest as the classifier, attained an accuracy of 87.5%.enginfo:eu-repo/semantics/openAccessComputer Engineering And Computer Science And ControlDigital Image ProcessingBilgisayar Mühendisliği Bilimleri-Bilgisayar Ve KontrolSayısal Görüntü İşlemeGörüntü İşleme ve Makine Öğrenmesi Yöntemiyle Erken Meme Kanseri TeşhisiEarly Prognosis of Breast Cancer Using Image Processing and Machine LearningGörüntü işleme ve makine öğrenmesi yöntemiyle erken meme kanseri teşhisiMaster Thesis