Şahbaz, Zeki2025-04-102025-04-1020242024-05-31https://hdl.handle.net/20.500.12573/2462Breast cancer is one of the most common cancer types among women worldwide. Early detection significantly increases the chances of survival and effective treatment, making advancements in diagnostic methodologies crucial. This study aims to improve the detection of tumor cells in breast cancer histopathology images using deep learning and image processing techniques. Significant modifications have been made to the hyperparameters, including the tumor bounding box size, batch size, optimization algorithms, learning rate, and weight decay. These changes focus on determining the best parameters of the Faster R-CNN model. A comprehensive analysis of different parameters was conducted using the Breast Cancer Histopathological Annotation and Diagnosis (BreCaHAD) dataset. The analysis identified the best settings for model performance, shows by improvements in precision, recall, and F-score. Our research contributes to the field of medical image analysis by identifying critical factors that affect the accuracy of tumor detection, contributing to the development of more accurate diagnostic tools.Meme kanseri, dünya genelinde kadınlar arasında görülen en yaygın kanser türlerinden biridir. Erken teşhis konulduğu zaman, hayatta kalma ve tedavi ihtimali arttığı için tanı metodolojilerindeki gelişmeler önemlidir. Bu çalışma, derin öğrenme ve görüntü işleme tekniklerini kullanarak meme kanseri histopatoloji görüntülerindeki tümör hücrelerinin tespitinde iyileştirme yapmayı hedeflemektedir. Özellikle tümör çevresini kapsayan kutuların boyutu, aynı andaki toplu iş sayısı, optimizasyon algoritmaları ve öğrenme hızı ile ağırlık azaltma dahil olmak üzere hiperparametrelerde farklı değerler sınanmaktadır. Bu değişkenler ile Faster R-CNN modelinin iyileştirilmesine odaklanılmaktadır. Meme Kanseri Histopatoloji Anotasyon ve Tanı (BreCaHAD) veri setini kullanarak çeşitli parametrelerde geniş bir analiz yapılmıştır. Analiz sonucunda, model performansını artıran en iyi parametreler belirlenerek; hassasiyet, geri çağırma ve F-skoru gibi önemli metriklerde iyileşme sağlanmıştır. Meme kanseri histopatoloji görüntülerinde tümör tespiti doğruluğunu etkileyen kritik faktörleri kapsamlı bir şekilde inceleyen bu çalışma, tıbbi görüntü analizi alanına önemli katkılar sunmaktadır. Elde edilen sonuçlar, daha güvenilir ve doğru tanıya katkıda bulunabilecek yeni araştırma alanları ve geliştirme yolları için sağlam bir temel oluşturmaktadır.enginfo:eu-repo/semantics/openAccessBreast Cancer, Histopathological Images, Deep Learning, Convolutional Neural Networks, Tumor DetectionMeme Kanseri, Histopatolojik Görüntüler, Derin Öğrenme, Evrişimsel Sinir Ağları, Tümör TespitiTumor detection in breast cancer histopathological images using convolutional neural networksMeme kanseri histopatoloji görüntülerinde evrişimsel sinir ağları kullanarak tümör tespitimasterThesis