Çinkir. Zübeyir2022-08-022022-08-02201500255718http://dx.doi.org/10.1090/mcom/2981https://hdl.handle.net/20.500.12573/1340Several invariants of polarized metrized graphs and their applications in Arithmetic Geometry have been studied recently. In this paper, we give fast algorithms to compute these invariants by expressing them in terms of the discrete Laplacian matrix and its pseudo inverse. The algorithm we give can be used for both symbolic and numerical computations. We present various examples to illustrate the implementation of these algorithms.enginfo:eu-repo/semantics/openAccessInvariants of polarized metrized graphsMetrized graphPolarized metrized graphPseudo inverse and relative dualizing sheafResistance functionThe discrete Laplacian matrixThe tau constantComputation of polarized metrized graph invariants by using discrete laplacian matrixarticle8429629532967