IMPROVING THE FLAME RETARDANCY USING NANOPARTICLES IN CABLE INSULATION

dc.contributor.author YILDIZ, Uğur
dc.contributor.department AGÜ, Fen Bilimleri Enstitüsü, İleri Malzemeler ve Nanoteknoloji Ana Bilim Dalı en_US
dc.date.accessioned 2022-02-08T09:03:34Z
dc.date.available 2022-02-08T09:03:34Z
dc.date.issued 2021 en_US
dc.date.submitted 2021-06
dc.description.abstract Al(OH)3 (ATH) and Mg(OH)2 (MDH) like materials are frequently used as flame retardants due to their ability to form water and oxide-based substances under the influence of heat. In this study, it is aimed to produce cable insulations with improved flame retardant properties by synthesizing nano-sized Mg(OH)2 and using this material together with EVA (ethylene-vinyl-acetate) copolymer and micro-sized Al(OH)3 and Mg(OH)2 . The study can be divided into four parts. In the first part, the flame retardant properties of ATH and MDH were compared. In the second part, different raw materials were used for the synthesis of Mg(OH)2 nanoparticles; in the third part, the synthesis was carried out at factory scale and compared with the commercial product. The samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), X-Ray diffraction analysis (XRD), X-Ray fluorescence analysis (XRF) and Thermogravimetric analysis (TGA). In the last part, different amounts of nano-sized Mg(OH)2 particles were added to the formulas using both ATH and MDH; the effects on flame retardant performances were investigated by the Limiting Oxygen Index (LOI) test and the vertical burning test. Mechanical properties such as elongation and tensile strength were also studied. It has been observed that the synthesized Mg(OH)2 particles with a thickness of 5- 10 nm and lengths reaching 900 nm, mixed in ATH based samples at a maximum rate of 9% and in MDH based samples at a maximum rate of 10%; LOI values increased by 26% for ATH based samples and 38% for MDH based samples. However, considering the losses in mechanical properties with the increase of nanoparticle additive, it has been seen that a maximum rate of 5% nano-sized Mg(OH)2 can be added. Even in this case, the LOI values increased by 8.6% in ATH based samples and 26% in MDH based samples. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12573/1118
dc.language.iso eng en_US
dc.publisher Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü en_US
dc.relation.publicationcategory Tez en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Flame Retardancy en_US
dc.subject Cable Insulation en_US
dc.subject Mg(OH)2 nanoparticle en_US
dc.subject EVA copolymer en_US
dc.title IMPROVING THE FLAME RETARDANCY USING NANOPARTICLES IN CABLE INSULATION en_US
dc.type masterThesis en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IMPROVING THE FLAME.pdf
Size:
3.89 MB
Format:
Adobe Portable Document Format
Description:
Yüksek Lisans Tezi

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: