Intelligent traffic light systems using edge flow predictions

dc.contributor.author Thahir, Adam Rizvi
dc.contributor.author Coşkun, Mustafa
dc.contributor.author Kılıç, Sultan Kübra
dc.contributor.author Gungor, Vehbi Cagrı
dc.contributor.authorID 0000-0003-0803-8372 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Thahir, Adam Rizvi
dc.contributor.institutionauthor Kılıç, Sultan Kübra
dc.contributor.institutionauthor Gungor, Vehbi Cagrı
dc.date.accessioned 2024-02-21T07:42:21Z
dc.date.available 2024-02-21T07:42:21Z
dc.date.issued 2024 en_US
dc.description.abstract In this paper, we propose a novel graph-based semi-supervised learning approach for traffic light management in multiple intersections. Specifically, the basic premise behind our paper is that if we know some of the occupied roads and predict which roads will be congested, we can dynamically change traffic lights at the intersections that are connected to the roads anticipated to be congested. Comparative performance evaluations show that the proposed approach can produce comparable average vehicle waiting time and reduce the training/learning time of learning adequate traffic light configurations for all intersections within a few seconds, while a deep learning-based approach can be trained in a few days for learning similar light configurations. en_US
dc.identifier.endpage 9 en_US
dc.identifier.issn 0920-5489
dc.identifier.issn 1872-7018
dc.identifier.other WOS:001044236000001
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.csi.2023.103771
dc.identifier.uri https://hdl.handle.net/20.500.12573/1953
dc.identifier.volume 87 en_US
dc.language.iso eng en_US
dc.publisher ELSEVIER en_US
dc.relation.isversionof 10.1016/j.csi.2023.103771 en_US
dc.relation.journal COMPUTER STANDARDS & INTERFACES en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.relation.tubitak 3220798
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial intelligence en_US
dc.subject Reinforcement learning en_US
dc.subject Traffic flow en_US
dc.subject Congestion en_US
dc.title Intelligent traffic light systems using edge flow predictions en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0920548923000521-main.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: