Intelligent traffic light systems using edge flow predictions
dc.contributor.author | Thahir, Adam Rizvi | |
dc.contributor.author | Coşkun, Mustafa | |
dc.contributor.author | Kılıç, Sultan Kübra | |
dc.contributor.author | Gungor, Vehbi Cagrı | |
dc.contributor.authorID | 0000-0003-0803-8372 | en_US |
dc.contributor.department | AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Thahir, Adam Rizvi | |
dc.contributor.institutionauthor | Kılıç, Sultan Kübra | |
dc.contributor.institutionauthor | Gungor, Vehbi Cagrı | |
dc.date.accessioned | 2024-02-21T07:42:21Z | |
dc.date.available | 2024-02-21T07:42:21Z | |
dc.date.issued | 2024 | en_US |
dc.description.abstract | In this paper, we propose a novel graph-based semi-supervised learning approach for traffic light management in multiple intersections. Specifically, the basic premise behind our paper is that if we know some of the occupied roads and predict which roads will be congested, we can dynamically change traffic lights at the intersections that are connected to the roads anticipated to be congested. Comparative performance evaluations show that the proposed approach can produce comparable average vehicle waiting time and reduce the training/learning time of learning adequate traffic light configurations for all intersections within a few seconds, while a deep learning-based approach can be trained in a few days for learning similar light configurations. | en_US |
dc.identifier.endpage | 9 | en_US |
dc.identifier.issn | 0920-5489 | |
dc.identifier.issn | 1872-7018 | |
dc.identifier.other | WOS:001044236000001 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.csi.2023.103771 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1953 | |
dc.identifier.volume | 87 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | ELSEVIER | en_US |
dc.relation.isversionof | 10.1016/j.csi.2023.103771 | en_US |
dc.relation.journal | COMPUTER STANDARDS & INTERFACES | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.relation.tubitak | 3220798 | |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Reinforcement learning | en_US |
dc.subject | Traffic flow | en_US |
dc.subject | Congestion | en_US |
dc.title | Intelligent traffic light systems using edge flow predictions | en_US |
dc.type | article | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 1-s2.0-S0920548923000521-main.pdf
- Size:
- 2.22 MB
- Format:
- Adobe Portable Document Format
- Description:
- Makale Dosyası
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: